Jump to content
Les Forums d'Infoclimat

Ce tchat, hébergé sur une plateforme indépendante d'Infoclimat, est géré et modéré par une équipe autonome, sans lien avec l'Association.
Un compte séparé du site et du forum d'Infoclimat est nécessaire pour s'y connecter.

Search the Community

Showing results for tags 'prévisions'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Prévisions
    • Prévisions à court et moyen terme
    • Evolution à plus long terme
    • Tendances saisonnières
  • Observations
    • Le temps en France
    • Le temps en Europe et dans le reste du monde
  • Climatologie
    • Paléoclimatologie
    • Climatologie
    • Evolution du climat
    • Phénomènes météorologiques violents
  • Les autres aspects de la météo
    • Météo, environnement et société
    • Instrumentation
    • Photos, vidéos et matériel de prise de vue
    • Questions - réponses sur la météo
  • On y parle de météo
    • Sites web
    • Expositions, conférences, évènements
    • Presse, livres, médias et cinéma
  • Discussions autour d'Infoclimat
    • Vie du site Infoclimat
    • Rencontres météo
    • Convivialités

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


About Me


Gender


Location


Site web


Bio


ICQ


AIM


Yahoo


Skype


Google

Found 7 results

  1. CAPE, convection et prévisions. C'est un sujet qui revient fréquemment, plus encore en période estivale, propice aux orages. Voici un point que j'essaie être assez complet sans être trop technique. J'espère que le plus grand nombre trouvera des informations intéressantes. J'ai essayé de simplifier sans perdre en finesse. Commentaires et corrections sont les bienvenus ! - Définition théorique - Définition pratique - Analogie concrète - Une brève histoire de convection .... - En résumé - Interprétations - Comment déterminer ces niveaux de pression depuis un radio-sondage ? Définition théorique : La CAPE : L'Énergie Potentielle de Convection Disponile (EPCD en français), Convective Available Potential Energy, en anglais. Sa définition est l'énergie potentielle par unité de masse que possède une particule d'air plus chaude que son environnement. Définition pratique : Étant plus chaude que son environnement immédiat, elle tente de retrouver son équilibre par un mouvement ascensionnelle, équilibre qu'elle retrouvera lorsque sa température sera équivalente à la température de son environnement. Cette énergie potentielle est alors transformée en énergie cinétique, puisqu'en mouvement par rapport aux référentiels terrestre et atmosphérique. Concrètement, une particule d'air est chauffée : cas du soleil qui chauffe le sol ; le sol, en retour, chauffe par contact les particules d'air à son contact (l'air est mauvais conducteur de chaleur, c'est essentiellement par contact que l'air se réchauffe, dans le cas qui nous intéresse). Étant plus chaude à pression constante, son volume s'accroît (loi des gaz parfaits : PV = nRT qui relie Pression, Volume et Température). Elle devient donc moins dense et va s'élever mécaniquement. C'est le fameux principe d'Archimède, ni plus ni moins. Elle s’élèvera jusqu'à se retrouver en équilibre. Selon l'énergie cinétique acquise, elle dépassera plus ou moins ce plafond. Note : cette ascension peut avoir une origine purement mécanique : présence d'un relief, arrivée d'un front, etc. Analogie concrète : Quand on plonge en mer ou en piscine, le corps est moins dense que l'eau, davantage en fonction de la profondeur atteinte. Une fois en bas, il remonte mécaniquement, le corps étant moins dense, jusqu'à la surface. Suivant l'énergie acquise (plongeon plus ou moins profond), il s’élèvera un peu au-dessus de la surface. De même, un ballon empli d'air qu'on plonge dans l'eau et qu'on lâche, s'élèvera jusqu'à la surface puis même en l'air avant de retomber. Son point d'équilibre se situe à la surface de l'eau. Au fond de l'eau, le ballon ou le corps possède une énergie potentielle qui sera « libérée » en énergie cinétique, c-à-d en mouvement vers le haut, dès qu'il sera lâché. Une fois la surface atteinte, l'énergie potentielle devient nulle. Au-dessus de la surface, l'énergie potentielle reprend mais « dans un sens opposé » et le ballon redescendra (énergie cinétique vers le bas) vers la surface, c'est-à-dire vers son point d'équilibre. On verra que la CAPE répond à un mécanisme similaire. Une brève histoire de convection .... Pour la particule d'air plus chaude que son environnement, je vais ajouter quelques subtilités. Une petite définition avant : celle du rapport de mélange. L'idée est simple. Il s'agit du rapport de la masse de vapeur d'eau que contient un volume d'air à la masse d'air sec de ce même volume. Dit autrement, on a un volume d'air (un ballon) qui contient une certaine masse de vapeur d'eau (d'« humidité »). Le rapport de mélange est la division de la masse de vapeur d'eau du ballon par la masse d'air du ballon sans la vapeur d'eau. La particule d'air qui s'élève n'échange pas d'énergie thermique (pas d'échange de chaleur) avec son environnement. Elle ne perd donc pas de chaleur de cette façon. En revanche, en s'élevant, la pression diminue. Selon la loi des gaz parfaits, son volume va alors augmenter et sa température « intérieure » (la température à l'intérieur de la particule d'air) va baisser. C'est ce qu'on appelle la détente adiabatique. Cependant, son rapport de mélange demeure constant (pas d'ajout ou de perte de vapeur d'eau durant l'ascension). Or, l'air ne peut contenir qu'une certaine masse de vapeur d'eau, la valeur maximale dépend de la température : plus elle est froide, moins elle peut en contenir. Logiquement, en s'élevant, la particule d'air finira par atteindre son niveau de saturation. Ce niveau de pression où la particule atteint sa température de saturation est le niveau de condensation par convection NCC (si l'origine de son ascension est la convection) ou le niveau de condensation par ascension NCA, dans le cas d'un soulèvement dynamique. Dit autrement, ce niveau de pression est atteint lorsque l'humidité relative de la particule d'air parvient à 100%. Le NCC (CCL en anglais, Convective Condensation Level) n'est par définition présent que lorsque l'atmosphère est instable (convection !). Le NCA (LCL, Lifted Condensation Level) se rencontre également en atmosphère stable. CCL et LCL se trouvent au même niveau de pression si l'atmosphère est saturée. Autrement, le CCL est à un niveau de pression inférieur (donc une altitude supérieur). Bien entendu, ces niveaux peuvent n'être jamais atteint si la particule est suffisamment sèche ou le niveau d'équilibre atteint avant la saturation. L'humidité relative étant à 100%, c'est à ce niveau de pression que les nuages convectifs apparaîtront. (En réalité ces nuages se forment très légèrement plus haut (de l'ordre de quelques mètres) au terme d'une légère sursaturation en présence de noyaux de condensation (aérosols divers et variés)). Niveau de convection libre, NCL (Level of Free Convection, LFC). Une fois le LCL atteint, la particule continue de s'élever jusqu'à atteindre ce niveau de condensation libre à partir duquel la température de la particule d'air, plus chaude que la température de son environnement (environnement saturé, on est à l'intérieur du nuage convectif) acquiert un supplément d'énergie cinétique. Comme précédemment, température plus chaude dit volume plus grand et densité plus faible. Son mouvement ascensionel s'accélère. Cependant, la particule subira là encore un refroidissement progressif jusqu'à rencontrer la même température de son environnement. Ce niveau de pression où les deux températures (de la particule et de son environnement) sont égales est le niveau d'équilibre, NE (Equilibrium Level, EL). Niveau d'équilibre, NE. À ce niveau de pression, la poussée d'Archimède flottabilité devient nulle. L'énergie cinétique acquise lui permet de s'élever encore un peu bien que sa température devienne du coup plus froide. Elle redescendra vers le NE. Ce mouvement oscillant s'amortit. C'est le sommet du nuage convectif. En pratique, dû notamment aux frictions entre particules et aérosols, le sommet peut être légèrement inférieur au NE. Le NE est toujours présent, dans une masse d'air sèche ou humide. Ouf ... ! En résumé : - Une particule, plus chaude que son environnement, s'élève. - Si elle est suffisamment chaude et/ou humide, elle atteindra le niveau de condensation (LCL) : elle devient saturée et le nuage se forme (base du nuage). - Elle continue à s'élever jusqu'au niveau de convection libre (LFC) où son énergie cinétique augmente. - Enfin, lorsque les deux températures sont égales, le niveau d'équilibre EL est atteint. C'est le sommet du nuage. (wikipedia) Interprétations : Si le LCL est plus bas que le LFC, la convection aura besoin d'un moteur supplémentaire tel qu'un front froid, un réchauffement solaire, une convergence de surface, un apport d'humidité, etc. La masse d'air est potentiellement instable. L'inverse traduit un manque d'humidité. L'atmosphère est instable mais ce manque d'humidité empêchera la formation d'un nuage. Si les deux sont au même niveau de pression, la masse d'air est naturellement convective. Le CCL permet d'évaluer le niveau de la base des nuages lors d'une convection par réchauffement diurne ou les ascendances thermiques (thermiques bleues notamment). Si le LCL et CCL sont égaux, l'atmosphère est saturée. Si le EL atteint la tropopause, la particule d'air peut continuer sa progression et former un dôme au-dessus de l'enclume du Cb. Et la CAPE dans tout ça ? La CAPE a deux composantes, une positive et une négative. Généralement, leur somme est nulle au niveau d'équilibre. La CAPE fournit sur les cartes est la CAPE « positive ». On se rappelle du ballon qui a une énergie « positive » sous l'eau et « négative » dans l'air ... La CAPE, dans le sens usuel (positive), s'exerce à partir du niveau de convection libre, LFC, jusqu'au niveau d'équilibre, EL. En-dessous du LFC, la CAPE est négative. C'est la CIN (Convective INhibition). Au-dessus de EL, la CAPE devient également négative (CIN). Une autre façon de présenter est de dire que lorsque la poussée d'Archimède flottabilité s'exerce vers le haut, la CAPE est positive. Lorsqu'elle s'exerce vers le bas, la CAPE est négative. Une couche limite planétaire haute et sèche conduira à une valeur de CIN élevée. À l'inverse, une humidité relativement moindre à l'étage moyen favorisera la CAPE. Comment déterminer ces niveaux de pression depuis un radio-sondage ? Je suppose que la signification des courbes présentes sur un RS sont connues. LCL : On part de la température initiale (courbe rouge) et on trace une ligne (verte, 1) qui suit l'adiabatique sèche (courbe fine noire). On part du point de rosée (ligne bleue pâle) et on trace une ligne parallèle (verte, 2) passant par ce point de départ et au rapport de mélange le plus proche (lignes fines brunes droites penchées pointillées). L’intersection des deux est au LCL. LFC : On part du LCL et on trace une ligne (verte, 3) qui suit la courbure de l'adiabatique humide (lignes noires courbées en pointillées). L'intersection avec la courbe des températures (rouge) donne le LFC. NE : On continue la ligne précédente (verte, 4) en continuant de suivre l'adiabatique humide. Lorsqu'elle recoupe la courbe des températures (rouge), on obtient le NE. Plusieurs éditeurs de RS fournissent ces niveaux directement sur le graphique. CAPE : La CAPE est donc la zone entre le LFC et le NE comprise entre la courbe des températures et l'adiabatique humide (hachures vertes). CIN : La CIN est la zone sous le LFC et comprise entre ces deux mêmes courbes. Une autre CIN est présente bien qu'elle n'apparaisse pas sur les cartes, est la zone au-dessus du NE, entre l'adiabatique humide (verte, 4) toujours et la courbe de températures (rouge). LI : Le LI, Lifted Index ou, en français, Indice de soulèvement, est la ligne noire épaisse que j'ai tracé au niveau 500 hPa, entre l'adiabatique humide et la courbe de températures. Sa définition est la différence entre la température de l'environnement (rouge) et la température d'une particule « soulevée » adiabatiquement (verte) au niveau de 500 hPa. Ceci dit, suivant le contexte, on peut abaisser ce niveau si le niveau moyen de la couche instable est plus bas (voire plus haut mais c'est plus rare, 500 hPa représentant déjà le niveau moyen de la troposphère). En février dernier, dans le topic de Prévisions Méditerranéennes, j'avais écrit une sorte mémo sur les différents indices d'instabilité (surtout en seconde partie du post) qui peut compléter ce message.:
  2. Pour débuter ce mois de Novembre , ont commence aujourd'hui avec le passage d'une petite perturbation sur nos régions. Pour cette fin de semaine, les Hautes pressions seront de retour avec une bonne dorsale pour ce Week-end mais qui se retractera assez rapidement avec l'activité dépressionnaire qui pousse par l'ouest . Mais cette activité dépressionnaire ne sera pas assez forte pour le moment pour vraiment dégager les Hp sur l'europe centrale, dés lors on retrouve le schéma avec plongeon des talwegs vers la Méditerranée. Concrètement évacuation du talweg de ce milieu de semaine ce vendredi avec rapidement l'arrivée des Hp par l'ouest. Pour au sol temps encore bien nuageux ce vendredi. Puis pour la toute fin de Week -end et tout début de semaine prochaine, les conditions dépressionnaires pourraient à nouveau essayer de pousser par l'ouest mais avec toujours cette tendance à se casser le nez contre les Hp continentales et donc s'obligeant à plonger vers la péninsule ibérique et méditerranée. Au niveau du temps quasiment pas de pluie à attendre jusqu'à lundi. Un samedi et un dimanche plutôt pas mal si les nuages bas ne sont pas présent bien sur.
  3. Bonjour, Après ce bref épisode neigeux qui a suscité des surprises (bonnes ou mauvaises), Icon et Arpège semblent confirmer un épisode de neige pour milieu de matinée de demain pour l'Ouest du topic.
  4. Bonjour, J'ai une question de débutant concernant l'API et les previsions vues sur le site. je pense remarquer que les informations de temperatures pour une meme ville à une même heure ne sont pas identiques je vois par exemple "2016-12-29 07:00:00":{"temperature":{"2m":272.5,"sol":275.8,"500hPa":-0.1,"850hPa":-0.1}, et sur le site je vois -2°C 7h -2 100 0 1040 12 19 je suppose qu'une "fonction appliquée à la temperature de l'API" nous fait passer de -0,65°C à -2°C, mais laquelle ? est il posisble d'avoir une explication, je n'ia rien trouvé à ce propos sur le site ? Autre question, hier à 16h, le site prevoyait -1°C à 7h du matin, et ce matin, pour 7h du matin il prevoyait -2°C, quel est la frequence de mise à jour des infos ? Encore un grand merci pour votre travail !! Et de bonnes fetes de fin d'année à tous
  5. Postez ici vos prévisions pour le Massif-Central pour le mois d'Octobre:
  6. Postez ici vos prévisions pour le Massif-Central pour le mois de Septembre: Pour l'instant l'été continue son petit bonhomme de chemin pas de réel pluie en vue.
  7. Je me permets d'ouvrir le sujet des prévisions concernant la semaine prochaine comme ce n'est pas encore fait. Les différents modèles semblent s'accorder en partie sur un début de semaine chaud, mais sans les excès que nous connaissons actuellement. Le sud serait davantage "affecté" par les remontées chaudes venant d'Espagne. GFS et CEP semblent d'accord dans les grandes lignes, même si le dernier cité fait un peut moins remonter la chaleur. N'étant pas dutout (comme vous le constatez ) un expert de la prévision, je vous laisse la main (pas taper!). À vous !
×
×
  • Create New...